Search results for "EGFR signaling"
showing 4 items of 4 documents
Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR
2014
Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, l…
MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation
2019
Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (…
71P Exosomes isolated in plasma of non-small cell lung cancer patients contain microRNA related to the EGFR pathway: Proof of concept
2016
Additive effects of cherlerythrine chloride combination with erlotinib in human non-small cell lung cancer cells
2017
Several studies implicate that lung cancer progression is governed by the interaction between epidermal growth factor receptor (EGFR) signaling and protein kinase C (PKC) pathways. Combined the targeting of EGFR and PKC may have an additive or synergistic effects in lung cancer treatment. The aim of this study is to explore the potential utility by inhibiting these two pathways with the combination of erlotinib and chelerythrine chloride in non-small cell lung cancer (NSCLC) cell lines. The erlotinib-less sensitive cell lines SK-MES-1 and A549 were treated with erlotinib or chelerythrine by themselves or in combination with each other. The cell viability, clonogenic survival, cell migration…